Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Sci ; 192(1): 83-96, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36617169

RESUMO

Arsenic exposure is correlated with atherosclerosis in epidemiological studies and in animal models. We have previously shown that arsenic exposure enhanced the atherosclerotic plaque size, increased the plaque lipid content, and decreased the plaque smooth muscle cell and collagen contents in the apolipoprotein E knockout (apoE-/-) mice. However, the percentage of plaque-resident macrophages, the primary drivers of atherosclerosis remained unchanged. Therefore, we hypothesized that although arsenic does not change the quantity of macrophages, it alters the macrophage transcriptome towards a proatherogenic state. To test this hypothesis, we used bone marrow-derived macrophages, polarized them to either interferon-γ (IFN-É£) stimulated, proinflammatory or interleukin-4 (IL-4) stimulated, alternatively activated macrophages in the presence or absence of 0.67 µM (50 ppb) arsenic and performed RNA sequencing. Arsenic exposure altered the gene expression of the macrophages in a subtype-specific manner. Most differentially expressed genes (88%) were altered specifically in either IFN-É£- or IL-4-stimulated macrophages, whereas in the remaining 12% of genes that changed in both cell types, did so in opposite directions. In IL-4-stimulated macrophages, arsenic significantly downregulated the genes involved in cholesterol biosynthesis and the chemokines CCL17/CCL22, whereas in IFN-É£-stimulated macrophages, the genes associated with the liver X receptor (LXR) pathway were downregulated by arsenic. Using a bone marrow transplant experiment, we validated that the deletion of LXRα from the hematopoietic compartment rescued arsenic-enhanced atherosclerosis in the apoE-/- mouse model. Together, these data suggest that arsenic modulates subtype-specific transcriptomic changes in macrophages and further emphasize the need to define macrophage heterogeneity in atherosclerotic plaques in order to evaluate the proatherogenic role of arsenic.


Assuntos
Arsênio , Aterosclerose , Placa Aterosclerótica , Animais , Camundongos , Arsênio/metabolismo , Interferon gama/genética , Interferon gama/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Camundongos Knockout , Aterosclerose/induzido quimicamente , Aterosclerose/genética , Aterosclerose/metabolismo , Placa Aterosclerótica/metabolismo , Macrófagos/metabolismo , Expressão Gênica , Apolipoproteínas E/genética , Camundongos Endogâmicos C57BL
2.
Environ Health Perspect ; 129(5): 57008, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34014776

RESUMO

BACKGROUND: Epidemiologic studies indicate that early life arsenic exposures are linked to an increased risk of cardiovascular diseases. Different oxidation and methylation states of arsenic exist in the environment and are formed in vivo via the action of arsenic (+3 oxidation state) methyltransferase (As3MT). Methylated arsenicals are pro-atherogenic postnatally, but pre- and perinatal effects are unclear. This is particularly important because methylated arsenicals are known to cross the placenta. OBJECTIVES: We tested the effects of early life exposure to inorganic and methylated arsenicals on atherosclerotic plaque formation and its composition in apolipoprotein E knock-out (apoE-/-) mice and evaluated whether apoE-/- mice lacking As3MT expression were susceptible to this effect. METHODS: We exposed apoE-/- or apoE-/-/As3MT-/- mice to 200 ppb inorganic or methylated arsenic in the drinking water from conception to weaning and assessed atherosclerotic plaques in the offspring at 18 wk of age. Mixed regression models were used to estimate the mean difference in each outcome relative to controls, adjusting for sex and including a random effects term to account for within-litter clustering. RESULTS: Early life exposure to inorganic arsenic, and more profoundly methylated arsenicals, resulted in significantly larger plaques in the aortic arch and sinus in both sexes. Lipid levels in these plaques were higher without a substantial difference in macrophage numbers. Smooth muscle cell content was not altered, but collagen content was lower. Importantly, there were sex-specific differences in these observations, where males had higher lipids and lower collagen in the plaque, but females did not. In mice lacking As3MT, arsenic did not alter the plaque size, although the size was highly variable. In addition, control apoE-/-/As3MT-/- mice had significantly larger plaque size compared with control apoE-/-. CONCLUSION: This study shows that early life exposure to inorganic and methylated arsenicals is pro-atherogenic with sex-specific differences in plaque composition and a potential role for As3MT in mice. https://doi.org/10.1289/EHP8171.


Assuntos
Arsênio , Placa Aterosclerótica , Efeitos Tardios da Exposição Pré-Natal , Animais , Arsênio/toxicidade , Arsenicais , Feminino , Masculino , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Camundongos Knockout , Placa Aterosclerótica/induzido quimicamente , Gravidez , Fatores Sexuais
3.
Int J Toxicol ; 38(5): 415-422, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31470746

RESUMO

Minipigs are an emerging nonrodent alternative for ocular toxicology owing to anatomical similarities in the minipig eyes when compared to humans. Ocular structures and components from Göttingen minipigs were characterized and compared to species commonly used in toxicology. Ocular reference data from Göttingen minipig including intraocular pressure, vitreous electrolyte and thiol concentration, and electroretinography (ERG) data are essential to model characterization and data interpretation during drug safety assessments. Intravitreal positive control agents including gentamicin, indocyanine green, and glycine were used to demonstrate ERG alterations caused by retinal cell toxicity, light transmission obstruction, or neurotransmission interferences, respectively. Electrolyte concentrations of the aqueous and vitreous humors from Göttingen minipigs were similar to other species including humans. The reference data presented herein supports the use of the Göttingen minipig as an alternate nonrodent species in ocular toxicology.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Olho/efeitos dos fármacos , Modelos Animais , Porco Miniatura , Testes de Toxicidade/métodos , Animais , Cães , Eletrorretinografia , Macaca fascicularis , Coelhos , Ratos Sprague-Dawley , Suínos
4.
Toxicol Sci ; 166(1): 213-218, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30376133

RESUMO

Arsenic exposure increases the risk of atherosclerosis, the gradual occlusion of the large arteries with fibro-fatty plaque. While epidemiologic data provide convincing evidence this is true at higher exposures, it is unclear whether this may occur at low arsenic exposures, near the maximum contaminant level of 10 ppb. We have previously shown that 200 ppb arsenite in the drinking water increased the atherosclerosis in apolipoprotein E knock-out (apoE-/-) mice after 13 weeks, but the effects of lower concentrations were unknown. Therefore, here, we analyzed the effects of oral exposure to arsenite from 10 to 200 ppb after 13 weeks. Importantly, we found that even at the lowest concentration of arsenite, there was a significant increase in atherosclerotic plaque size. In our previous studies, we found that arsenite exposure resulted in decreased smooth muscle cells (SMCs) and collagen within the plaque. This change is indicative of a less stable phenotype that could increase the risk of rupture and subsequently, myocardial infarct or stroke in humans. In addition, we observed that lipid increased within the plaque without concomitant increase in macrophage content, suggesting that the macrophages were retaining more lipid intracellularly. We also assessed these plaque components in apoE-/- mice exposed to 10-200 ppb arsenite. Interestingly, we observed that macrophage lipid accumulation occurred at lower concentrations than the decreased SMC/collagen content. Together these data suggest that in the apoE-/- model, low arsenite concentrations are pro-atherogenic and that macrophage lipid homeostasis is more sensitive to arsenite-induced perturbation than the SMCs.


Assuntos
Apolipoproteínas E , Arsenitos/toxicidade , Aterosclerose/induzido quimicamente , Poluentes Ambientais/toxicidade , Placa Aterosclerótica/induzido quimicamente , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/patologia , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Camundongos , Camundongos Knockout , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia
5.
Environ Health Perspect ; 125(7): 077001, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28728140

RESUMO

BACKGROUND: Arsenic is metabolized through a series of oxidative methylation reactions by arsenic (3) methyltransferase (As3MT) to yield methylated intermediates. Although arsenic exposure is known to increase the risk of atherosclerosis, the contribution of arsenic methylation and As3MT remains undefined. OBJECTIVES: Our objective was to define whether methylated arsenic intermediates were proatherogenic and whether arsenic biotransformation by As3MT was required for arsenic-enhanced atherosclerosis. METHODS: We utilized the apoE−/− mouse model to compare atherosclerotic plaque size and composition after inorganic arsenic, methylated arsenical, or arsenobetaine exposure in drinking water. We also generated apoE−/−/As3mt−/− double knockout mice to test whether As3MT-mediated biotransformation was required for the proatherogenic effects of inorganic arsenite. Furthermore, As3MT expression and function were assessed in in vitro cultures of plaque-resident cells. Finally, bone marrow transplantation studies were performed to define the contribution of As3MT-mediated methylation in different cell types to the development of atherosclerosis after inorganic arsenic exposure. RESULTS: We found that methylated arsenicals, but not arsenobetaine, are proatherogenic and that As3MT is required for arsenic to induce reactive oxygen species and promote atherosclerosis. Importantly, As3MT was expressed and functional in multiple plaque-resident cell types, and transplant studies indicated that As3MT is required in extrahepatic tissues to promote atherosclerosis. CONCLUSION: Taken together, our findings indicate that As3MT acts to promote cardiovascular toxicity of arsenic and suggest that human AS3MT SNPs that correlate with enzyme function could predict those most at risk to develop atherosclerosis among the millions that are exposed to arsenic. https://doi.org/10.1289/EHP806.


Assuntos
Arsênio/toxicidade , Arsenicais/metabolismo , Aterosclerose/induzido quimicamente , Aterosclerose/genética , Expressão Gênica , Metiltransferases/genética , Poluentes Químicos da Água/toxicidade , Animais , Humanos , Masculino , Metilação , Metiltransferases/metabolismo , Camundongos , Camundongos Knockout
6.
Toxicol Sci ; 150(2): 333-46, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26865663

RESUMO

Tungsten is a naturally occurring metal that increasingly is being incorporated into industrial goods and medical devices, and is recognized as an emerging contaminant. Tungsten preferentially and rapidly accumulates in murine bone in a concentration-dependent manner; however the effect of tungsten deposition on bone biology is unknown. Other metals alter bone homeostasis by targeting bone marrow-derived mesenchymal stromal cell (MSC) differentiation, thus, we investigated the effects of tungsten on MSCsin vitroandin vivoIn vitro, tungsten shifted the balance of MSC differentiation by enhancing rosiglitazone-induced adipogenesis, which correlated with an increase in adipocyte content in the bone of tungsten-exposed, young, male mice. Conversely, tungsten inhibited osteogenesis of MSCsin vitro; however, we found no evidence that tungsten inhibited osteogenesisin vivo Interestingly, two factors known to influence adipogenesis are sex and age of mice. Both female and older mice have enhanced adipogenesis. We extended our study and exposed young female and adult (9-month) male and female mice to tungsten for 4 weeks. Although tungsten accumulated to a similar extent in young female mice, it did not promote adipogenesis. Interestingly, tungsten did not accumulate in the bone of older mice; it was undetectable in adult male mice, and just above the limit of detect in adult female mice. Surprisingly, tungsten enhanced adipogenesis in adult female mice. In summary, we found that tungsten alters bone homeostasis by altering differentiation of MSCs, which could have significant implications for bone quality, but is highly dependent upon sex and age.


Assuntos
Adipogenia/efeitos dos fármacos , Medula Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Fêmur/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Caracteres Sexuais , Tungstênio/toxicidade , Envelhecimento/metabolismo , Animais , Medula Óssea/metabolismo , Relação Dose-Resposta a Droga , Poluentes Ambientais/farmacocinética , Feminino , Fêmur/metabolismo , Fêmur/patologia , Técnicas In Vitro , Masculino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese/efeitos dos fármacos , Tungstênio/farmacocinética
7.
PLoS One ; 10(9): e0136592, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26332580

RESUMO

Epidemiological studies have shown that arsenic exposure increases atherosclerosis, but the mechanisms underlying this relationship are unknown. Monocytes, macrophages and platelets play an important role in the initiation of atherosclerosis. Circulating monocytes and macrophages bind to the activated vascular endothelium and migrate into the sub-endothelium, where they become lipid-laden foam cells. This process can be facilitated by platelets, which favour monocyte recruitment to the lesion. Thus, we assessed the effects of low-to-moderate arsenic exposure on monocyte adhesion to endothelial cells, platelet activation and platelet-monocyte interactions. We observed that arsenic induces human monocyte adhesion to endothelial cells in vitro. These findings were confirmed ex vivo using a murine organ culture system at concentrations as low as 10 ppb. We found that both cell types need to be exposed to arsenic to maximize monocyte adhesion to the endothelium. This adhesion process is specific to monocyte/endothelium interactions. Hence, no effect of arsenic on platelet activation or platelet/leukocyte interaction was observed. We found that arsenic increases adhesion of mononuclear cells via increased CD29 binding to VCAM-1, an adhesion molecule found on activated endothelial cells. Similar results were observed in vivo, where arsenic-exposed mice exhibit increased VCAM-1 expression on endothelial cells and increased CD29 on circulating monocytes. Interestingly, expression of adhesion molecules and increased binding can be inhibited by antioxidants in vitro and in vivo. Together, these data suggest that arsenic might enhance atherosclerosis by increasing monocyte adhesion to endothelial cells, a process that is inhibited by antioxidants.


Assuntos
Arsênio/efeitos adversos , Aterosclerose/induzido quimicamente , Aterosclerose/patologia , Endotélio Vascular/patologia , Poluentes Ambientais/efeitos adversos , Monócitos/efeitos dos fármacos , Monócitos/patologia , Animais , Antioxidantes/farmacologia , Aterosclerose/metabolismo , Adesão Celular , Linhagem Celular , Células Cultivadas , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Técnicas de Cultura de Órgãos , Ativação Plaquetária/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
8.
Toxicol Sci ; 143(1): 165-77, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25324207

RESUMO

The number of individuals exposed to high levels of tungsten is increasing, yet there is limited knowledge of the potential human health risks. Recently, a cohort of breast cancer patients was left with tungsten in their breasts following testing of a tungsten-based shield during intraoperative radiotherapy. While monitoring tungsten levels in the blood and urine of these patients, we utilized the 66Cl4 cell model, in vitro and in mice to study the effects of tungsten exposure on mammary tumor growth and metastasis. We still detect tungsten in the urine of patients' years after surgery (mean urinary tungsten concentration at least 20 months post-surgery = 1.76 ng/ml), even in those who have opted for mastectomy, indicating that tungsten does not remain in the breast. In addition, standard chelation therapy was ineffective at mobilizing tungsten. In the mouse model, tungsten slightly delayed primary tumor growth, but significantly enhanced lung metastasis. In vitro, tungsten did not enhance 66Cl4 proliferation or invasion, suggesting that tungsten was not directly acting on 66Cl4 primary tumor cells to enhance invasion. In contrast, tungsten changed the tumor microenvironment, enhancing parameters known to be important for cell invasion and metastasis including activated fibroblasts, matrix metalloproteinases, and myeloid-derived suppressor cells. We show, for the first time, that tungsten enhances metastasis in an animal model of breast cancer by targeting the microenvironment. Importantly, all these tumor microenvironmental changes are associated with a poor prognosis in humans.


Assuntos
Neoplasias da Mama/patologia , Neoplasias Pulmonares/secundário , Microambiente Tumoral , Compostos de Tungstênio/toxicidade , Animais , Biópsia , Carga Corporal (Radioterapia) , Neoplasias da Mama/sangue , Neoplasias da Mama/metabolismo , Neoplasias da Mama/urina , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quelantes/uso terapêutico , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/urina , Mamografia , Camundongos Endogâmicos BALB C , Invasividade Neoplásica , Medição de Risco , Fatores de Risco , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Compostos de Tungstênio/sangue , Compostos de Tungstênio/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...